
BLAKE2: simpler, smaller, fast as MD5
2013.01.29

https://blake2.net

Jean-Philippe Aumasson (@aumasson)
Samuel Neves (@sevenps)

Zooko Wilcox-O’Hearn (@zooko)
Christian Winnerlein (@codesinchaos)

Abstract. We present the cryptographic hash function BLAKE2, an improved version
of the SHA-3 finalist BLAKE optimized for speed in software. Target applications in-
clude cloud storage, intrusion detection, or version control systems. BLAKE2 comes
in two main flavors: BLAKE2b is optimized for 64-bit platforms, and BLAKE2s for
smaller architectures. On 64-bit platforms, BLAKE2 is often faster than MD5, yet pro-
vides security similar to that of SHA-3. We specify parallel versions BLAKE2bp and
BLAKE2sp that are up to 4 and 8 times faster, by taking advantage of SIMD and/or
multiple cores. BLAKE2 has more benefits than just speed: BLAKE2 uses up to 32%
less RAM than BLAKE, and comes with a comprehensive tree-hashing mode as well
as an efficient MAC mode.

1 Introduction

The SHA-3 Competition succeeded in selecting a hash function that complements SHA-2
and is much faster than SHA-2 in hardware [11]. There is nevertheless a demand for fast
software hashing for applications such as integrity checking and deduplication in filesystems
and cloud storage, host-based intrusion detection, version control systems, or secure boot
schemes.

SHA-3 does not fit these needs well—for example on Qualcomm’s Krait microarchitec-
ture1 SHA-3-256 takes about 20% longer to hash a message than SHA-256 does, and on
Intel’s Ivy Bridge microarchitecture2 SHA-3-512 takes about twice as long as SHA-512 does.

Many systems use faster algorithms like MD5, SHA-1, or a custom function to meet
their speed requirements, even though those functions may be insecure. MD5 is famously
vulnerable to collision and length-extension attacks [13, 23], but it is 2.53 times as fast as
SHA-256 on Ivy Bridge and 2.98 times as fast as SHA-256 on Krait.

Despite MD5’s significant security flaws, it continues to be among the most widely-used
algorithms for file identification and data integrity. To choose just a handful of examples, the
OpenStack cloud storage system [22], the popular version control system Perforce, and the
recent object storage system used internally in AOL [20] all rely on MD5 for data integrity.
The venerable md5sum unix tool remains one of the most widely-used tools for data integrity
checking. The Sun/Oracle ZFS filesystem includes the option of using SHA-256 for data in-
tegrity, but the default configuration is to instead use a non-cryptographic 256-bit checksum,

1See http://bench.cr.yp.to/results-hash.html#armeabi-h9dragon, accessed 7 Dec 2012.
2See http://bench.cr.yp.to/results-hash.html#amd64-hydra8, accessed 7 Dec 2012.

1

https://blake2.net
http://bench.cr.yp.to/results-hash.html#armeabi-h9dragon
http://bench.cr.yp.to/results-hash.html#amd64-hydra8

0

5

10

15

20

25

BLAKE2b BLAKE2s MD5 SHA−1 SHA−256 SHA−512 SHA3−256 SHA3−512

cycles per byte speed on Intel Sandy Bridge

mebibytes per second at 3.1GHz

890
554 550 571

169

266 271

144

Figure 1: Speed comparison of various popular hash functions, taken from eBACS’s “sandy”
measurements. SHA-3 and BLAKE2 have no known security issues. SHA-1, MD5, SHA-
256, and SHA-512 are susceptible to length-extension. SHA-1 and MD5 are vulnerable to
collisions. MD5 is vulnerable to chosen-prefix collisions.

for performance reasons. The Tahoe-LAFS distributed storage system uses SHA-256 for
data integrity, but is investigating a faster hash function [14].

Some SHA-3 finalists outperform SHA-2 in software: for example, on Ivy Bridge BLAKE-
512 is 1.41 times as fast as SHA-512, and BLAKE-256 is 1.70 times as fast as SHA-256.
BLAKE-512 reaches 5.76 cycles per byte, or approximately 579 mebibytes per second,
against 411 for SHA-512, on a CPU clocked at 3.5GHz.

BLAKE thus appears to be a good candidate for fast software hashing. Its security was
evaluated by NIST in the SHA-3 process as having a “very large security margin”, and the
cryptanalysis published on BLAKE was noted as having “a great deal of depth” (see §4).

But as observed by Preneel [21], its design “reflects the state of the art in October 2008”;
since then, and after extensive cryptanalysis, we have a better understanding of BLAKE’s
security and efficiency properties. We therefore introduce BLAKE2, an improved BLAKE
with the following properties:

• Faster than MD5 on 64-bit Intel platforms

• 32% less RAM required than BLAKE

• Direct support, with no overhead, of

– Parallelism for many-times faster hashing on multicore or SIMD CPUs

– Tree hashing for incremental update or verification of large files

– Prefix-MAC for authentication that is simpler and faster than HMAC

– Personalization for defining a unique hash function for each application

• Minimal padding, which is faster and simpler to implement

2

The rest of the document is structured as follows: §2 describes BLAKE2, §3 discusses its
efficiency on various platforms and reports preliminary benchmarks, §4 argues that BLAKE2
is secure, and §5 contains legal statements.

Public domain C and C# code of BLAKE2 is available on https://blake2.net. We are
developing a tool b2sum similar to, and aiming to replace, md5sum.

2 Description of BLAKE2

BLAKE2 comes in two flavors:

• BLAKE2b (or just BLAKE2) is optimized for 64-bit platforms—including NEON-enabled
ARMs—and produces digests of any size between 1 and 64 bytes.

• BLAKE2s is optimized for 8- to 32-bit platforms, and produces digests of any size
between 1 and 32 bytes.

Both are believed to be highly secure and have good performance on any platform, software
or hardware. Each one is portable to any CPU, but can be up twice as fast when used
on the CPU size for which it is optimized; for example, on a Tegra 2 (32-bit ARMv7-based
SoC) BLAKE2s is expected to be about twice as fast as BLAKE2b, whereas on an AMD
A10-5800K (64-bit, Piledriver microarchitecture), BLAKE2b is expected to be more than 1.5
times as fast as BLAKE2s.

Since BLAKE2 is very similar to BLAKE, we first describe the changes introduced with
BLAKE2. The specification is complete with elements shared with BLAKE in Appendix A.
We refer to https://131002.net/blake for a complete specification of BLAKE.

2.1 Fewer rounds

BLAKE2b does 12 rounds, and BLAKE2s does 10 rounds, against 16 and 14 respectively
for BLAKE. Based on the security analysis performed so far, and on reasonable assumptions
on future progress, it is unlikely that 16 and 14 rounds are meaningfully more secure than
12 and 10 rounds. Recall that the initial BLAKE submission [1] had 14 and 10 rounds,
respectively, and that the later increase [2] was motivated by the high speed of BLAKE.

This change gives a direct speed-up of about 25% and 29%, respectively, on long data.
Speed on short data also significantly improves.

2.2 Rotations optimized for speed

The G function of BLAKE-512 performs four 64-bit word rotations of respectively 32, 25, 16,
and 11 bits. BLAKE2b replaces 25 with 24, and 11 with 63:

• Using a 24-bit rotation allows SSSE3-capable CPUs to perform two rotations in parallel
with a single SIMD instruction (namely, pshufb), whereas two shifts plus a logical OR
are required for a rotation of 25 bits. This reduces the arithmetic cost of the G func-
tion, in recent Intel CPUs, from 18 single cycle instructions to 16 instructions, a 12%
decrease.

3

https://blake2.net
https://131002.net/blake

• A 63-bit rotation can be implemented as an addition (doubling) and a shift followed by
a logical OR. This provides a slight speed-up on platforms where addition and shift can
be realized in parallel but not two shifts (i.e., some recent Intel CPUs). Additionally,
since a rotation right by 63 is equal to a rotation left by 1, this may be slightly faster in
some architectures where 1 is treated as a special case.

No platform suffers from these changes. For an in-depth analysis of optimized implementa-
tions of rotations, we refer to a previous work by two co-designers of BLAKE2 [18].

Past experiments by the BLAKE designers as well as third parties suggest that known
differential attacks are unlikely to get significantly better, nor worse (cf. §4).

2.3 Minimal padding and finalization flags

BLAKE2 pads the last data block if and only if necessary, with null bytes. If the data
length is a multiple of the block length, no padding byte is added.

BLAKE2 introduces finalization flags f0 and f1, as auxiliary inputs to the compression
function:

• The security functionality of the padding is transferred to a finalization flag f0, a word
set to ff...ff if the block processed is the last, and to 00...00 otherwise. The flag f0
is 64-bit for BLAKE2b, and 32-bit for BLAKE2s.

• A second finalization flag f1 is used to signal the last node of a layer in tree-hashing
modes. When processing the last block—that is, when f0 is ff...ff—the flag f1 is
also set to ff...ff if the node considered is the last, and to 00...00 otherwise.

The finalization flags are processed by the compression function as described in §2.4.
BLAKE2s thus supports hashing of data of at most 264 − 1 bytes, that is, almost 16

exbibytes (the amount of memory addressable by 64-bit processors). The upper bound for
BLAKE2b is even more ridiculous, with up to 2128 − 1 bytes supported.

2.4 Fewer constants

Whereas BLAKE used 8 word constants as IV plus 16 word constants for use in the com-
pression function, BLAKE2 uses a total of 8 word constants, instead of 24. This saves 128
ROM bytes and 128 RAM bytes in BLAKE2b implementations, and 64 ROM bytes and 64
RAM bytes in BLAKE2s implementations.

The compression function initialization phase is modified to:
v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

←


h0 h1 h2 h3
h4 h5 h6 h7
IV0 IV1 IV2 IV3

t0 ⊕ IV4 t1 ⊕ IV5 f0 ⊕ IV6 f1 ⊕ IV7


Note the introduction of finalization flags f0 and f1, in place of BLAKE’s redundant counter.

4

The G function of BLAKE2b is defined as:

a ← a+ b+mσr(2i)

d ← (d⊕ a) ≫ 32

c ← c+ d

b ← (b⊕ c) ≫ 24

a ← a+ b+mσr(2i+1)

d ← (d⊕ a) ≫ 16

c ← c+ d

b ← (b⊕ c) ≫ 63

Note the aforementioned change of rotation counts.
Similarly, the G function of BLAKE2s is simplified to:

a ← a+ b+mσr(2i)

d ← (d⊕ a) ≫ 16

c ← c+ d

b ← (b⊕ c) ≫ 12

a ← a+ b+mσr(2i+1)

d ← (d⊕ a) ≫ 8

c ← c+ d

b ← (b⊕ c) ≫ 7

Omitting the constants in G gives an algorithm similar to the (unattacked) BLAZE toy ver-
sion3. Constants in G initially aimed to guarantee early propagation of carries, but it turned
out that the benefits (if any) are not worth the performance penalty. This change saves two
xors and two loads per G, that is, 16% of the total arithmetic (addition and xor) instructions.

2.5 Little-endian

BLAKE, like SHA-1 and SHA-2, parses data blocks in the big-endian byte order. Like MD5,
BLAKE2 is little-endian, because the large majority of target platforms is little-endian (AMD
and Intel desktop processors, most mainstream ARM systems). Switching to little-endian
may provide a slight speed-up, and often simplifies implementations.

Note that in BLAKE, the counter t is composed of two words t0 and t1, where t0 holds
the least significant bits of the integer encoded. This little-endian convention is preserved in
BLAKE2.

2.6 Counter in bytes

The counter t counts bytes rather than bits. This simplifies implementations and reduce
the risk of error, since target applications measure data volumes in bytes rather than bits.
This change increases the amount of data that can be processed by 8 times, compared to
BLAKE.

3See https://131002.net/blake/toyblake.pdf.

5

https://131002.net/blake/toyblake.pdf

2.7 Salt processing

BLAKE’s predecessor LAKE [3] introduced the built-in support for a salt, to simplify the use
of randomized hashing within digital signature schemes.

In BLAKE2 the salt is processed as a one-time input to the hash function, through the IV,
rather than as an input to each compression function. This simplifies the compression func-
tion, and saves a few instructions as well as a few bytes in RAM, since the salt doesn’t have
to be stored anymore. Using salt-independent compression functions has only negligible,
and very theoretical, impact on security, as discussed in §4.

2.8 Parameter block

The parameter block of BLAKE2 is xored with the IV prior to the processing of the first data
block. It encodes parameters for secure tree hashing, as well as key length (in keyed mode)
and digest length.

The parameters are described below, and the block structure is shown in Tables 1 and 2:

• General parameters:

– Digest byte length (1 byte): an integer in [1, 64] for BLAKE2b, in [1, 32] for BLAKE2s

– Key byte length (1 byte): an integer in [0, 64] for BLAKE2b, in [0, 32] for BLAKE2s
(set to 0 if no key is used)

– Salt (16 or 8 bytes): an arbitrary string of 16 bytes for BLAKE2b, and 8 bytes for
BLAKE2s (set to all-NULL by default)

– Personalization (16 or 8 bytes): an arbitrary string of 16 bytes for BLAKE2b, and
8 bytes for BLAKE2s (set to all-NULL by default)

• Tree hashing parameters:

– Fanout (1 byte): an integer in [0, 255] (set to 0 if unlimited, and to 1 only in se-
quential mode)

– Maximal depth (1 byte): an integer in [1, 255] (set to 255 if unlimited, and to 1
only in sequential mode)

– Leaf maximal byte length (4 bytes): an integer in [0, 232 − 1], that is, up to 4 GiB
(set to 0 if unlimited, or in sequential mode)

– Node offset (8 or 6 bytes): an integer in [0, 264−1] for BLAKE2b, and in [0, 248−1]
for BLAKE2s (set to 0 for the first, leftmost, leaf, or in sequential mode)

– Node depth (1 byte): an integer in [0, 255] (set to 0 for the leaves, or in sequential
mode)

– Inner hash byte length (1 byte): an integer in [0, 64] for BLAKE2b, and in [0, 32]
for BLAKE2s (set to 0 in sequential mode)

This is 50 bytes in total for BLAKE2b, and 32 bytes for BLAKE2s. Any bytes left are reserved
for future and/or application-specific use, and are NULL. Values spanning more than one
byte are written in little-endian. Note that tree hashing may be keyed, in which case leaf
instances hash the key followed by a number of bytes equal to (at most) the maximal leaf
length.

6

Offset 0 1 2 3
0 Digest length Key length Fanout Depth
4 Leaf length
8 Node offset12

16 Node depth Inner length RFU
20
24 RFU
28
32
. . . Salt
44
48
. . . Personalization
60

Table 1: BLAKE2b parameter block structure (offsets in bytes).

Offset 0 1 2 3
0 Digest length Key length Fanout Depth
4 Leaf length
8 Node offset

12 Node offset (cont.) Node depth Inner length
16 Salt20
24 Personalization28

Table 2: BLAKE2s parameter block structure (offsets in bytes).

7

Example parameter block of BLAKE2b. We take as example an instance of BLAKE2b
with

• 64-byte digests, that is, with parameter digest length set to 40,

• a 256-bit key, that is, with the parameter key length set to 20,

• a salt set to the all-55 string,

• a personalization set to the all-ee string.

BLAKE2b hashes data sequentially, thus tree parameters are set to the value specified for
the sequential mode: fanout and maximal depth are set to 01, leaf maximal length is set to
00000000, node offset is set to 0000000000000000, node depth and inner hash length are
set to 00.

The parameter block for this instance of BLAKE2b is thus the following4:

40200101 00000000 00000000 00000000 00000000 00000000 00000000 00000000

55555555 55555555 55555555 55555555 eeeeeeee eeeeeeee eeeeeeee eeeeeeee

Example parameter block of BLAKE2s. We take as example an instance of BLAKE2s
with

• 32-byte digests, that is, with parameter digest length set to 20,

• no key, that is, with the parameter key length set to 00,

• no salt, and no personalization, that is, with all respective bytes set NULL.

BLAKE2s hashes data sequentially, thus tree parameters are set to the value specified for
the sequential mode: fanout and maximal depth are set to 01, leaf maximal length is set to
00000000, node offset is set to 0000000000000000, node depth and inner hash length are
set to 00.

The parameter block for this instance of BLAKE2s is thus

20000101 00000000 00000000 00000000 00000000 00000000 00000000 00000000

2.9 Keyed hashing (MAC and PRF)

When keyed (that is, when the field key length is non-zero), BLAKE2 sets the first data block
to the key padded with zeros, the second data block to the first block of the message, the
third block to the second block of the message, etc. Note that the padded key is treated as
arbitrary data, therefore:

• The counter t includes the 64 (or 128) bytes of the key block, regardless of the key
length.

• When hashing the empty message with a key, BLAKE2b and BLAKE2s make only one
call to the compression function.

4For readability we add a space between each 4-byte block, however the value represented is a string of
bytes, not a sequence of 4-byte words (which makes a difference with respect to endianness).

8

2:0

1:0 1:1

0:0 0:1 0:2

(a) Hashing 3 blocks: the tree has depth 3.

3:0

2:0 2:1

0:0 0:1 0:2 0:3 0:4

1:0 1:1 1:2

(b) Hashing 5 blocks: the tree has depth 4.

Figure 2: Layouts of tree hashing with fanout 2, and maximal depth at least 4.

The main application of keyed BLAKE2 is as a message authentication code (MAC): BLAKE2
can be used securely in prefix-MAC mode, thanks to the indifferentiability property inherited
from BLAKE [10]. Prefix-MAC is faster than HMAC, as it saves at least one call to the
compression function. Keyed BLAKE2 can also be used to instantiate PRFs, for example
within the PBKDF2 password hashing scheme.

2.10 Tree hashing

The parameter block supports arbitrary tree hashing modes, be it binary or ternary trees,
arbitrary-depth updatable tree hashing or fixed-depth parallel hashing, etc. Note that, unlike
other functions, BLAKE2 does not restrict the leaf length and the fanout to be powers of 2.

Basic mechanism. Informally, tree hashing processes chunks of data of “leaf length” bytes
independently of each other, then combines the respective hashes using a tree structure
wherein each node takes as input the concatenation of “fanout” hashes. The “node offset”
and “node depth” parameters ensure that each invocation to the hash function (leaf of internal
node) uses a different hash function. The finalization flag f1 signals when a hash invocation
is the last one at a given depth (where “last” is with respect to the node offset counter, for
both leaves and intermediate nodes). The flag f1 can only be non-zero for the last block
compressed within a hash invocation, and the root node always has f1 set to ff...ff.

The tree hashing mechanism is illustrated on Figures 2 and 3, which show layout of
trees given different parameters and different input lengths. On those figures, octagons
represent leaves (i.e., instances of the hash function processing input data), double-lined
nodes (including leaves) are the last nodes of a layer, and thus have the flag f1 set). Labels
“i:j” indicate a node’s depth i and offset j.

We refer to [7] for a comprehensive overview of secure tree hashing constructions.

9

1:0

0:0 0:1 0:2 0:3

(a) Hashing 4 blocks: the tree has depth 2.

2:0

1:0 1:1

0:0 0:1 0:2 0:3 0:4

(b) Hashing 5 blocks: the tree has depth 3.

Figure 3: Layouts of tree hashing with fanout 4, and maximal depth at least 3.

Message parsing. Unless specified otherwise, we recommend that data be parsed as
contiguous blocks: for example, if leaf length is 1024 bytes, then the first 1024-byte data block
is processed by the leaf with offset 0, the subsequent 1024-byte data block is processed by
the leaf with offset 1, etc.

Special cases. We highlight some special cases of tree hashing:

• Unlimited fanout: When the fanout is unlimited (parameter set to 0), then the root
node hashes the concatenation of as many leaves are required to process the mes-
sage, as shown on Figure 4. That is, the depth of the tree is always 2, regardless of
the maximal depth parameter. Nevertheless, changing the maximal depth parameter
changes the final hash value returned. We thus recommend to set the depth parameter
to 2.

• Dealing with saturated trees: If a tree hashing instance has fanout f ≥ 2, maximal
depth d ≥ 2, and leaf maximal length ` ≥ 1 bytes, then up to fd−1 · ` can be processed
within a single tree. If more bytes have to be hashed, the fanout of the root node
is extended to hash as many digests as necessary to respect the depth limit. This
mechanism is illustrated on Figure 5. Note that if the maximal depth is 2, then the
value does not affect the layout of the tree, which is identical to that of a tree hash with
unlimited fanout (see Figure 4).

Generic tree parameters. Tree parameters supported by the parameter block allow for a
wide range of implementation trade-offs, for example to efficiently support updatable hash-
ing, which is typically an advantage when hashing many (small) chunks of data.

Although optimal performance will be reached by choosing the parameters specific to
one’s application, we specify the following parameters for a generic tree mode: binary tree
(i.e., fanout 2), unlimited depth, and leaves of 4 KiB (the typical size of a memory page).

10

1:0

0:0 0:1 0:2 0:3 ... 0:N

Figure 4: Tree hashing with unbounded fanout (0) and arbitrary maximal depth (de facto, 2).

2:0

1:0 1:1 1:2

0:0 0:1 0:2 0:3 0:4 0:5

Figure 5: Tree hashing with maximal depth 3, fanout 2, but a root with larger fanout due to
the reach of the maximal depth.

Updatable hashing example. Assume one has to provide a digest of a 1-tebibyte filesys-
tem disk image that is updated every day. Instead of recomputing the digest by reading
all the 240 bytes, one can use our generic tree mode to implement an updatable hashing
scheme:

1. Apply the generic tree mode, and store the 240/4096 = 228 hashes from the leaves as
well as the 228 − 2 intermediate hashes

2. When a leaf is changed, update the final digest by recomputing the 28 intermediate
hashes

If BLAKE2b is used with intermediate hashes of 32 bytes, and that it hashes at a rate of 500
mebibytes per second, then step 1 takes approximately 35 minutes and generates about 16
gibibytes of intermediate data, whereas step 2 is instantaneous.

Note however that much less data may be stored: For many applications it is preferable
to only store the intermediate hashes for larger pieces of data (without increasing the leaf
size), which reduces memory requirement by only storing “higher” intermediate values. For
example, storing intermediate values for 4 MiB chunks instead of all 4 KiB leaves reduces the
storage to only 16 MiB. Indeed, using 4 KiB leaves allows applications with different piece
sizes (as long as they are powers-of-two of at least 4 KiB) to produce the same root hash,
while allowing them to make different granularity vs. storage trade-offs.

11

2.11 Parallel hashing: BLAKE2sp and BLAKE2bp

We specify 2 parallel hash functions (that is, with depth 2 and unlimited leaf length):

• BLAKE2bp runs 4 instances of BLAKE2b in parallel

• BLAKE2sp runs 8 instances of BLAKE2s in parallel

These functions use a different parsing rule than the default one in §§2.10: The first instance
(node offset 0) hashes the message composed of the concatenation of all message blocks of
index zero modulo 4; the second instance (node offset 1) hashes blocks of index 1 modulo 4,
etc. Note that when the leaf length is unlimited, parsing the input as contiguous blocks would
require the knowledge of the input length before any parallel operation, which is undesirable
(e.g. when hashing a stream of data of undefined length, or a file received over a network).

When hashing one single large file, and when incrementability is not required, such par-
allel modes with unlimited leaves length seems the most appropriate, since

• They minimize the computation overhead by doing only one non-leaf call to the
sequential hash function

• They maximize the usage of the CPU by keeping multiple cores and instruction
pipelines busy simultaneously

• They require realistic bandwidth and memory

Note that parallel hashes have exactly the same interfaces as their sequential counterparts;
for example, for BLAKE2bp one can define
blake2bp(uint8 t *out, uint8 t *in, uint8 t *key, int outlen, int inlen, int keylen)

Within a parallel hash, the same parameter block, except for the node offset, is used
for all 4 or 8 instance of the sequential hash. For example, with no key, no salt, and no
personalization, a version of BLAKE2sp producing 32-byte digests uses the eight following
parameters blocks for the eight leaves:

20000802 00000000 00000000 00000020 00000000 00000000 00000000 00000000

20000802 00000000 01000000 00000020 00000000 00000000 00000000 00000000

20000802 00000000 02000000 00000020 00000000 00000000 00000000 00000000

20000802 00000000 03000000 00000020 00000000 00000000 00000000 00000000

20000802 00000000 04000000 00000020 00000000 00000000 00000000 00000000

20000802 00000000 05000000 00000020 00000000 00000000 00000000 00000000

20000802 00000000 06000000 00000020 00000000 00000000 00000000 00000000

20000802 00000000 07000000 00000020 00000000 00000000 00000000 00000000

Here the fanout is set to 08, the depth is set to 02, the leaf length is set to 00 (unlimited),
the node depth is set to 00 (leaves), and the inner hash length is set to 20. The node
offset ranges from 0 to 7, and is little-endian encoded to, e.g., the byte string 07000000

(representing the integer 00000007). Note that the last node (offset 7) sets the finalization
flag f1 in its last call to the compression function.

12

Finally, the root hash function in this version of BLAKE2sp uses the following parameter
block (note the node depth set to 01):

20000802 00000000 00000000 00000120 00000000 00000000 00000000 00000000

3 Performance

BLAKE2 is much faster than BLAKE, mainly due to its reduced number of rounds. On long
messages, the BLAKE2b and BLAKE2s versions are expected to be approximately 25% and
29% faster, ignoring any savings from the absence of constants, optimized rotations, or little-
endian conversion. The parallel versions BLAKE2bp and BLAKE2sp are expected to be 4
and 8 times faster than BLAKE2b and BLAKE2s on long messages, when implemented with
multiple threads on a CPU with 4 or more cores (as most desktop and server processors:
AMD FX-8150, Intel Core i5-2400S, etc.). Parallel hashing also benefits from advanced CPU
technologies, as previously observed [19, §5.2].

3.1 Why BLAKE2 is fast in software

BLAKE2, along with its parallel variant, can take advantage of the following architectural
features, or combinations thereof:

Instruction-level parallelism. Most modern processors are superscalar, that is, able to
run several instructions per cycle through pipelining, out-of-order execution, and other re-
lated techniques. BLAKE2 has a natural instruction parallelism of 4 instructions within the
G function; processors that are able to handle more instruction-level parallelism can do so
in BLAKE2bp, by interleaving independent compression function calls. Examples of proces-
sors with notorious amount of instruction parallelism are Intel’s Core 2, i7, and Itanium or
AMD’s K10, Bulldozer, and Piledriver.

SIMD instructions. Initially designed to speed up multimedia tasks, many modern pro-
cessors contain vector units, which enable SIMD processing of data. Again, BLAKE2 can
take advantage of vector units not only in its G function, but also in tree modes (such as
the mode proposed in §§2.11), by running several compression instances within vector reg-
isters. Microarchitectures with SIMD capabilities are found in recent Intel and AMD CPUs,
NEON-extended ARM-based SoC, PowerPC and Cell CPUs.

Multiple cores. Limits in both semiconductor manufacturing processes, as well as instruction-
level parallelism have driven CPU manufacturers towards yet another kind of coarse-grained
parallelism, where multiple independent CPUs are placed inside the same die, and enable
the programmer to get thread-level parallelism. While sequential BLAKE2 does not take ad-
vantage of this, the parallel mode described in §§2.11, and other tree modes, can run each
intermediate hashing in its own thread. Candidate processors for this approach are recent
Intel and AMD chips, the IBM Cell, and recent ARM, UltraSPARC and Loongson models.

13

Microarchitecture
BLAKE2b BLAKE2s

Long 1536 64 Long 1536 64

Sandy Bridge 3.32 3.81 9.00 5.34 5.35 5.50
Bulldozer 5.29 5.30 11.95 8.20 8.21 7.91

Table 3: Speed, in cycles per byte, of BLAKE2 in sequential mode.

Microarchitecture
BLAKE2b BLAKE2s

Long 1536 64 Long 1536 64

Sandy Bridge (@3.1GHz) 890 776 328 554 553 538
Bulldozer (@3.1GHz) 559 558 247 361 558 374

Table 4: Speed, in mebibytes per second, of BLAKE2 in sequential mode (at the nominal
frequency of each CPU).

3.2 64-bit CPUs

We have submitted optimized BLAKE2 implementations to eBACS [6], that take advantage
of the AVX and XOP instruction sets. Table 3 reports the timings obtained in two key ar-
chitectures: Intel’s Sandy Bridge (hydra7) and AMD’s Bulldozer (hydra6). The full set of
results is available at http://bench.cr.yp.to/results-hash.html. Furthermore, Table 4
reports the actual hashing speeds experienced on those CPUs, when running at their default
frequency.

Compared to the best known timings for BLAKE [19],

• On Sandy Bridge, BLAKE2b is 71.99% faster than BLAKE-512, and BLAKE2s is 40.26%
faster than BLAKE-256,

• On Bulldozer, BLAKE2b is 30.25% faster than BLAKE-512, and BLAKE2s is 43.78%
faster than BLAKE-256.

Due to the lack of native rotation instructions on SIMD registers, the speedup of BLAKE2b
is greater on the Intel processors, which benefit not only from the round reduction, but also
from the easier-to-implement rotations.

On short messages, the speed advantage of the improved padding on BLAKE2 is quite
noticeable. On Sandy Bridge, no other cryptographic hash function measured in SUPER-
COP5 (including MD5 and MD4) is faster than BLAKE2s on 64-byte messages, while BLAKE2b
is as fast as MD4.

As expected, the parallel versions provide a speed-up of a factor close to the paralleliza-
tion degree: for example, using our tool b2sum on Bulldozer, the file ubuntu-12.04-beta1-

-desktop-amd64.iso is hashed in 1.16s with BLAKE2b, 0.33s with BLAKE2bp (that is, 3.51
times faster), in 1.72s with BLAKE2s, and in 0.27s with BLAKE2sp (that is, 6.37 times faster).
Similarly, on Sandy Bridge BLAKE2bp is 3.76 times faster than BLAKE2b (1.58s vs 0.42s)
hashing the same file, while BLAKE2sp is 3.68 times faster than BLAKE2s (2.21s vs 0.60s).
Enabling hyperthreading (8 virtual cores) increases the latter speedup to 5.66, hashing the

5http://bench.cr.yp.to/results-hash.html#amd64-hydra7

14

http://bench.cr.yp.to/results-hash.html
http://bench.cr.yp.to/results-hash.html#amd64-hydra7

file in 0.39s. We expect these speedups to converge to 4 and 8 respectively, as implemen-
tations (and CPUs) improve.

3.3 Low-end platforms

A typical implementation of BLAKE-256 in embedded software stores in RAM at least the
chaining value (32 bytes), the message (64 bytes), the constants (64 bytes), the permutation
internal state (64 bytes), the counter (8 bytes), and the salt, if used (16 bytes); that is, 232
bytes, and 248 with a salt. BLAKE2s reduces these figures to 168 bytes—recall that the salt
doesn’t have to be stored anymore—that is, a gain of respectively 28% and 32%. Similarly,
BLAKE2b only requires 336 bytes of RAM, against 464 or 496 for BLAKE-512.

3.4 Hardware

Hardware directly benefit from the 29% and 25% speed-up in sequential mode, due to the
round reduction, for any message length. Parallelism is straightforward to implement by
replicating the architecture of the sequential hash. BLAKE2 enjoys the same degrees of
freedom as BLAKE to implement various space-time tradeoffs (horizontal and vertical folding,
pipelining, etc.). In addition, parallel hashing provides another dimension for trade-offs in
hardware architectures: depending on the system properties (e.g. how many input bits can
be read per cycle), one may choose between, for example, BLAKE2sp based on 8 high-
latency compact cores, or BLAKE2s based on a single low-latency unrolled core.

4 Security

BLAKE2 aims to provide the highest security level, be it in terms of classical notions as
(second) preimage or collision resistance, or of theoretical notions as pseudorandomness
(a.k.a. indistinguishability) or indifferentiability.

BLAKE2 builds on the high confidence built by BLAKE in the SHA-3 competition. Al-
though BLAKE2 performs fewer rounds than BLAKE, this does not imply a lower security, as
explained below.

4.1 BLAKE legacy

The security of BLAKE2 is closely related to that of the SHA-3 finalist BLAKE, since they rely
on a similar core permutation originally used in Bernstein’s ChaCha stream cipher [4] (itself
a variant of Salsa20 [5], co-winner in the eSTREAM project6).

The final SHA-3 report [11, p5] comments that, like Keccak, BLAKE has a “very large
security margin”, and that the cryptanalysis performed on BLAKE to date “appears to have a
great deal of depth, while the cryptanalysis on Keccak has somewhat less depth”.

Indeed, since 2009, at least 14 research papers have described cryptanalysis results on
reduced versions of BLAKE. The most advanced attacks on the BLAKE as hash function—as
opposed to its building blocks—are preimage attacks on 2.5 rounds by Ji and Liangyu, with
respective complexities 2241 and 2481 for BLAKE-256 and BLAKE-512 [15]. Most research

6See http://www.ecrypt.eu.org/stream/.

15

http://www.ecrypt.eu.org/stream/

actually considered reduced versions of the compression function or core permutation of
BLAKE, regardless of the constraints imposed by the IV. The most recent results of this type
are the following

• A “distinguisher” on 6 rounds of the permutation of BLAKE-256, with complexity 2456,
by Dunkelman and Khovratovich [12];

• A “boomerang distinguisher” on 8 rounds of the core permutation of BLAKE-512, with
complexity 2242, by Biryukov, Nikolic, and Roy [9] (recent works question the correct-
ness of this result [17]).

The exact attacks as described in research papers may not directly apply to BLAKE2, due to
the changes of rotation counts (typically, differential characteristics for BLAKE do not apply
to BLAKE2). Nevertheless, we expect attacks on reduced BLAKE with n rounds to adapt to
BLAKE2 with n rounds, though with slightly different complexities.

4.2 Implications of BLAKE2 tweaks

We have argued that the reduced number of rounds and the optimized rotations are unlikely
to meaningfully reduce the security of BLAKE2, compared to that of BLAKE. We summarize
the security implications of other tweaks:

Salt-independent compressions. BLAKE2 salts the hash function in the IV, rather than
each compression. This preserves the uniqueness of the hash function for any distinct salt,
but facilitates theoretical multicollision attacks relying on offline precomputations (see [8,16]).
However, this leaves fewer “controlled” bits in the initial state of the compression function,
which complicates the finding of fixed points.

Many valid IVs. Due to the high number of valid parameter blocks, BLAKE2 admits many
valid initial chaining values. For example, if an attacker has an oracle that returns collisions
for random chaining values and messages, she is more likely to succeed in attacking the
hash function because she has many valid targets, rather than a valid one. However, such
a scenario assumes that collisions can be found efficiently, that is, that the hash function is
already broken.

Simplified padding. The new padding does not include the message length of the mes-
sage, unlike BLAKE. However, it is easy to see that the length is indirectly encoded through
the counter, and that the padding preserves the unambiguous encoding of the initial padding.
That is, the padding simplification does not affect the security of the hash function.

5 Legal statements

We, the designers of BLAKE2, do hereby declare that

• BLAKE2 is free for everyone to use;

16

• We are aware of no patent applications that may cover the practice of the BLAKE2
algorithm (or any version constructed as specified in the present document), reference
implementation, or optimized implementations;

The reference source code package of BLAKE2, as available on https://blake2.net/, is
published under the CC0 licence7. The notice included on top of each source code file states
the following:

To the extent possible under law, the author(s) have dedicated all copyright and
related and neighboring rights to this software to the public domain worldwide.

References

[1] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. SHA-3
proposal BLAKE. Submission to NIST (Round 1/2), 2008.

[2] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. SHA-3
proposal BLAKE. Submission to NIST (Round 3), 2010.

[3] Jean-Philippe Aumasson, Willi Meier, and Raphael C.-W. Phan. The hash function fam-
ily LAKE. In Kaisa Nyberg, editor, FSE, volume 5086 of LNCS, pages 36–53. Springer,
2008.

[4] Daniel J. Bernstein. ChaCha, a variant of Salsa20. http://cr.yp.to/chacha.html.

[5] Daniel J. Bernstein. Snuffle 2005: the Salsa20 encryption function. http://cr.yp.to/
snuffle.html.

[6] Daniel J. Bernstein and Tanja Lange, editors. eBACS: ECRYPT Benchmarking of Cryp-
tographic Systems. accessed 1 November 2012.

[7] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sufficient con-
ditions for sound tree and sequential hashing modes. Cryptology ePrint Archive, Report
2009/210, 2009. http://eprint.iacr.org/2009/210.

[8] Eli Biham and Orr Dunkelman. A framework for iterative hash functions - HAIFA. Cryp-
tology ePrint Archive, Report 2007/278, 2007. http://eprint.iacr.org/2007/278.

[9] Alex Biryukov, Ivica Nikolic, and Arnab Roy. Boomerang attacks on BLAKE-32. In
Antoine Joux, editor, FSE, volume 6733 of LNCS. Springer, 2011.

[10] Donghoon Chang, Mridul Nandi, and Moti Yung. Indifferentiability of the Hash Algorithm
BLAKE. Cryptology ePrint Archive, Report 2011/623, 2011. http://eprint.iacr.org/
2011/623.

[11] Shu-jen Chang, Ray Perlner, William E. Burr, Meltem Sönmez Turan, John M. Kelsey,
Souradyuti Paul, and Lawrence E. Bassham. Third-Round Report of the SHA-3 Cryp-
tographic Hash Algorithm Competition. NISTIR 7896, National Institute for Standards
and Technology, November 2012.

7http://creativecommons.org/choose/zero/

17

https://blake2.net/
http://cr.yp.to/chacha.html
http://cr.yp.to/snuffle.html
http://cr.yp.to/snuffle.html
http://eprint.iacr.org/2009/210
http://eprint.iacr.org/2007/278
http://eprint.iacr.org/2011/623
http://eprint.iacr.org/2011/623
http://creativecommons.org/choose/zero/

[12] Orr Dunkelman and Dmitry Khovratovich. Iterative differentials, symmetries, and mes-
sage modification in BLAKE-256. In ECRYPT2 Hash Workshop, 2011.

[13] Thai Duong and Juliano Rizzo. Flickr’s API Signature Forgery Vulnerability. http:

//netifera.com/research/, September 2009.

[14] Eirik Haver and Pål Ruud. Experimenting with SHA-3 candidates in Tahoe-LAFS. Tech-
nical report, Norwegian University of Science and Technology, 2010.

[15] Li Ji and Xu Liangyu. Attacks on round-reduced BLAKE. Cryptology ePrint Archive,
Report 2009/238, 2009. http://eprint.iacr.org/2009/238.

[16] Antoine Joux. Multicollisions in iterated hash functions. application to cascaded con-
structions. In Matthew K. Franklin, editor, CRYPTO, volume 3152 of LNCS. Springer,
2004.

[17] Gaëtan Leurent. ARXtools: A toolkit for ARX analysis. In The Third SHA-3 Candidate
Conference, March 2012.

[18] Samuel Neves and Jean-Philippe Aumasson. BLAKE and 256-bit advanced vector ex-
tensions. In The Third SHA-3 Candidate Conference, March 2012.

[19] Samuel Neves and Jean-Philippe Aumasson. Implementing BLAKE with AVX, AVX2,
and XOP. Cryptology ePrint Archive, Report 2012/275, 2012. http://eprint.iacr.

org/2012/275.

[20] Daniel Pollack. HSS: A simple file storage system for web applications. In 26th Large
Installation System Administration Conference (LISA ’12), 2012.

[21] Bart Preneel. The First 30 Years of Cryptographic Hash Functions and the NIST SHA-3
Competition. In Josef Pieprzyk, editor, CT-RSA, volume 5985 of LNCS. Springer, 2010.

[22] R. Slipetskyy. Security issues in OpenStack. Master’s thesis, Norwegian University of
Science and Technology, 2011.

[23] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra, David Molnar,
Dag Arne Osvik, and Benne de Weger. Short chosen-prefix collisions for MD5 and the
creation of a rogue CA certificate. In Shai Halevi, editor, CRYPTO, volume 5677 of
LNCS. Springer, 2009.

A Specification complements

To make the document self-contained, we complete the specification of BLAKE2b and BLAKE2s,
describing mechanisms inherited from BLAKE and refering to the new features introduced
in §2.

Recall that BLAKE2b works with 64-bit words, and BLAKE2s works with 32-bit words,
and that both parse byte streams as word arrays in a little-endian way.

18

http://netifera.com/research/
http://netifera.com/research/
http://eprint.iacr.org/2009/238
http://eprint.iacr.org/2012/275
http://eprint.iacr.org/2012/275

A.1 BLAKE2b

BLAKE2b supports data of any byte length 0 ≤ ` < 2128. Data is first padded as per §§2.3
to form a sequence of N = d`/128e 16-word blocks m0,m1, . . . ,mN−1, and then hashed by
doing

h0 ← IV⊕ P
for i = 0, . . . ,N− 1

hi+1 ← compress(hi,mi, `i)
return hN

where `i denotes the number of data bytes in m0,m1, . . . ,m
i (that is, not counting any

padding byte), P is the parameter block specified in §§2.8, and IV is (as in BLAKE and
SHA-512) the following 64-bit words:

IV0 = 6a09e667f3bcc908 IV1 = bb67ae8584caa73b

IV2 = 3c6ef372fe94f82b IV3 = a54ff53a5f1d36f1

IV4 = 510e527fade682d1 IV5 = 9b05688c2b3e6c1f

IV6 = 1f83d9abfb41bd6b IV7 = 5be0cd19137e2179

The compression function compress takes as input

• a 64-byte chain value h = h0, . . . , h7

• a 128-byte message block m = m0, . . . ,m15

• a counter t = t0, t1, and finalization flags f0, f1

First, compress initializes a 16-word internal state v0, . . . , v15 as per §§2.4, that is
v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

←


h0 h1 h2 h3
h4 h5 h6 h7
IV0 IV1 IV2 IV3

t0 ⊕ IV4 t1 ⊕ IV5 f0 ⊕ IV6 f1 ⊕ IV7


where f0 and f1 are the finalization flags defined in §§2.3.

The internal state v is then transformed through a sequence of 12 rounds, where a round
does

G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13) G2(v2 , v6 , v10, v14) G3(v3 , v7 , v11, v15)

G4(v0 , v5 , v10, v15) G5(v1 , v6 , v11, v12) G6(v2 , v7 , v8 , v13) G7(v3 , v4 , v9 , v14)

That is, a round applies a G function to each of the columns in parallel, and then to all of the
diagonals in parallel. The G function of BLAKE2b is defined in §§2.4, and uses the constants
in Table 5.

19

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

Table 5: Permutations of {0, . . . , 15} used by the BLAKE2 functions.

After the 12 rounds, the new chain value h ′
0, . . . , h

′
7 is defined as

h ′
0 ← h0 ⊕ v0 ⊕ v8
h ′
1 ← h1 ⊕ v1 ⊕ v9
h ′
2 ← h2 ⊕ v2 ⊕ v10
h ′
3 ← h3 ⊕ v3 ⊕ v11
h ′
4 ← h4 ⊕ v4 ⊕ v12
h ′
5 ← h5 ⊕ v5 ⊕ v13
h ′
6 ← h6 ⊕ v6 ⊕ v14
h ′
7 ← h7 ⊕ v7 ⊕ v15

Note the absence of the salt, compared to BLAKE.

A.2 BLAKE2s

BLAKE2s supports data of any byte length 0 ≤ ` < 264. It works similarly to BLAKE2b, but on
32-bit words instead of 64-bit words (the byte length of a chaining value, a message block, a
counter or finalization flag are thus divided by two).

BLAKE2s uses the following IV:

IV0 = 6a09e667 IV1 = bb67ae85

IV2 = 3c6ef372 IV3 = a54ff53a

IV4 = 510e527f IV5 = 9b05688c

IV6 = 1f83d9ab IV7 = 5be0cd19

BLAKE2s does 10 rounds, and uses the G function defined in §§2.4.

20

	Introduction
	Description of BLAKE2
	Fewer rounds
	Rotations optimized for speed
	Minimal padding and finalization flags
	Fewer constants
	Little-endian
	Counter in bytes
	Salt processing
	Parameter block
	Keyed hashing (MAC and PRF)
	Tree hashing
	Parallel hashing: BLAKE2sp and BLAKE2bp

	Performance
	Why BLAKE2 is fast in software
	64-bit CPUs
	Low-end platforms
	Hardware

	Security
	BLAKE legacy
	Implications of BLAKE2 tweaks

	Legal statements
	Specification complements
	BLAKE2b
	BLAKE2s

